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Abstract—As an extension of previous work in the literature, this paper considers a particular
one-dimensional, halfspace, non-equilibrium Marshak wave problem. The radiative transfer
model employed is a one-group diffusion approximation with Marshak boundary condition,
where the radiation and material fields are out of equilibrium. An analytic solution for the
distribution of radiative energy and material temperature as a function of space and time to
this problem is given and tables of numerical results are generated. These benchmark results,
together with the previously published results, are useful as a reference for validating
time-dependent radiation diffusion computer codes. A comparison with a finite difference
solution is presented which shows excellent agreement when a fine spatial mesh and small time
steps are used. Copyright © 1996 Published by Elsevier Science Ltd

1. INTRODUCTION

Due to the complexity of the equation of radiative transfer, the need to include the material energy
balance equation, and the generally complex dependence of the material properties on the relevant
independent variables, almost all realistic time-dependent radiative transfer problems must be
solved numerically. Many computer codes for this type of problem exist in the engineering and
scientific community. However, to verify the numerical schemes used in the codes and to test the
accuracy and the sensitivity to changes in mesh size (in space and time) of the codes, it is desirable
to have benchmark results by analytic methods for some reference problems. Such benchmark
results (analytic solutions) for time-dependent radiative transfer reference problems are rare in the
literature.

One semi-analytic solution to a time-dependent radiative transfer problem was derived by
Marshak.' The problem Marshak treated has since been called the Marshak wave problem and
corresponds to an initially cold halfspace of material with radiation incident upon the surface. In
his treatment, Marshak assumed that the material and radiation fields are in equilibrium, i.e., the
radiation field at any time and space point is simply the Planckian at the local material temperature.
Under this assumption, the equation of transfer is eliminated, and the problem admits a similarity
solution to a second order nonlinear ordinary differential equation, that can be solved numerically.?
Hence, Marshak’s semi-analytic solution is only valid for the equilibrium Marshak diffusion
problem.

Pomraning considered the non-equilibrium Marshak diffusion problem with a one group
diffusion description,’ allowing radiation and material fields to develop separately according to the
physics of the problem. In order to make the problem tractable analytically, Pomraning introduced
a specific dependence of the material heat capacity on the material temperature; he assumed that
this heat capacity is proportional to the cube of the temperature. With this assumption, both the
equation of transfer and the energy balance equation become linear in radiative energy and the
fourth power of the material temperature. As pointed out by Pomraning,’ the sole purpose of this
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assumption is to relax the physical content of the problem such that a detailed analytic solution
can be obtained and thus provide a useful test problem for radiative transfer codes, since those
codes are meant to handle an arbitrary temperature dependence of the heat capacity. By using the
Laplace transform, Pomraning derived the analytic solutions for the surface quantities, integral
quantities, and the distributions of radiative energy and material temperature as functions of space
and time for the case of the ‘“‘no retardation™ approximation, in which the speed of light is treated
as an infinity in the equation of transfer. However, for a more general case where the speed of
light is treated as a finite constant, Pomraning only derived the solutions for the spatially integrated
radiation and material energies in the slab as functions of time.’ No solutions or benchmark results
were given for the spatial distributions of radiative energy and material temperature. Since such
distribution results are essential to fully validate time-dependent radiative transfer computer codes,
the purpose of this paper is to extend the work of Pomraning® to derive an analytic solution to
the problem and generate benchmark results for the distribution of radiative energy and material
temperature as a function of space and time when the speed of light is treated as a finite constant
in the equation of transfer. The remainder of this paper is organized as follows. The derivation
of the analytic solution is given in Sec. 2. The numerical scheme of evaluating the analytic solution
and the benchmark numerical results are presented in Sec. 3. These generated benchmark results
are compared with a finite difference solution in Sec. 4. Section 5 presents a few concluding
remarks.

Before closing this Introduction, we remind our readers that there are two other papers devoted
to the derivation of analytic solution to this non-equilibrium Marshak wave problem. Pomraning
and Shokair* reported a spherical harmonic (P-2) treatment to the problem, and Ganapol and
Pomraning’ considered the problem strictly in a transport description. In both treatments, analytic
solutions for the surface and integral quantities were derived. Like the diffusion case, no solutions
or benchmark results for the distribution of radiative energy and material temperature as a function
of space and time were given. We plan to explore the possibility of providing this missing but
definitely desirable information for the transport description in the near future and will report any
positive progress in a future publication. However, the full transport solution is considerably more
difficult to derive and to evaluate numerically than the diffusion solution presented here.

2. ANALYSIS

We consider the same non-equilibrium Marshak wave problem as Pomraning.’ For completeness
and clarity of the presentation, a portion of the analysis in Ref. 3 is reproduced in this section.
The non-equilibrium Marshak wave problem consists of a semi-infinite, purely absorbing, and
homogeneous medium occupying 0 < z < c0. The medium is at a zero temperature with no
radiation field present at time 7 < 0. Commencing at =0, a time independent radiative flux
impinges upon the surface at z = 0. Neglecting hydrodynamic motion and heat conduction, the
one group radiative transfer equation in the diffusion approximation and the material energy
balance equation are’

a1 e - (DG, 1) - aT'e, 1) @

where E(z,t) is the radiation energy density, T(z, t) is the material temperature, k(7T) is the
absorption cross section (opacity), ¢ is the speed of light, @ is the radiation constant, and ¢,(T)
is the heat capacity of the material. The Marshak boundary condition on Eq. (1) at z = 0 is given by
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where F, is the flux incident upon the surface z = 0. The boundary condition at z = o on Eq.
(1) 1s

E(0,1) =0, 4
and the initial conditions on these two equations are
E(z,0)=T(z,0)=0. )

Equations (1) and (2), together with the boundary and initial conditions, Egs. (3)(5), define the
two unknowns that we wish to compute, namely, £(z, ¢) and T(z, ¢). Equations (1) and (2) are
clearly nonlinear for a general temperature dependence of x(7T) and c¢.(T). To remove this
nonlinearity, Pomraning’ assumed that « is independent of temperature, and ¢, is proportional to
the cube of the temperature, i.e.,

¢, =aTl". (6)

Then Egs. (1) and (2) become linear in E and 7¢. Further, Pomraning’ recast these equations into
dimensionless form by introducing the dimensionless independent variables given by

X = \/grcz, 7= (%)t, @)

and new dependent variables given by

u(x, 1) = (ﬁ)[——E(;i;’)J, o(x, 7) = (g)[———‘”‘;z ‘)]. @)

With these new variables, Egs. (1)-(5) take the dimensionless form

e&u(x, 1) Pulx, 1)

ot axz = I)(X, T) - u(xs ‘C)’ (9)
WD) oy, 1) — o, ), (10)
ot
2 ou@©,7) _
u(0, 7) ﬁ—ax =1 (11
u(ce, 1) = u(x, 0) = v(x,0) =0, (12)
where the parameter ¢ is defined as
160 4a
=" =" (13)

Here o in Eq. (13) is the Stefan—Boltzmann constant and is given by ¢ = ac/4.
To solve Egs. (9)(12), we introduce the Laplace transform according to

As) = va dz e () (14)
to Eqgs. (9)-(12) and obtain
esu(x, s) — 62“%2’—{) = (x, s) — @(x, 5), (15)
st(x, s) = a(x, s) — v(x, 5), (16)
ﬁ(O,s)——\%a";%ﬂ%, (17)

(0, s)=0. (18)
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Equations (15)-(18) yield the following solutions,® in s space,

a(x,s) = M— (19)

s[/3 + 2B6)
_ _ \/5 e-ﬁ(s)x
T S T DL3 + 2860 @0
where fi(s) is given by
Bi(s) = (ﬁi)“ + (s + DI @1

The solutions for u(x, 7) and v(x, ©) follow Egs. (19) and (20) by the Laplace inverse transform.
In Ref. 3, Pomraning considered the case “e = 0’ carefully and derived analytic solutions for the
surface quantities (0, 7) and v(0, 7), the integral quantities ¥, (t) and ¥,,(7), which are defined as

V. (1) = jw dxu(x, 1), Y.(r)= J‘w dxv(x, 1), (22)

0

and the distributions u(x, 7) and v(x, t) as functions of space and time. Detailed benchmark results
were given for this special case.’ As mentioned previously, setting the parameter ¢ to zero
corresponds to the “no retardation” approximation, which implies that, as far as the radiative
transfer process is concerned, the speed of light is infinite [see Eq. (1)], and that the radiation field
instantly comes into a steady-state distribution with the material temperature distribution at any
time. However, for the general case of an arbitrary ¢, Pomraning only gave the analytic solutions
for the ¥, (1) and ¥.(z), not for u(x, 1) and v(x, t). Since these distribution results, u(x, ) and
v(x, 1), as well as ¥,(7) and Y.(7), for an arbitrary ¢ are required for validating time-dependent
radiative transfer computer codes (in the diffusion approximation), we will focus on deriving the
analytic solutions and generating benchmark results for u(x, 7) and v(x, t) with an arbitrary e.
We now invert #(x, s) back to u(x, t), with ¢ arbitrary, by the Laplace inversion theorem

i6) = 57 | ds T @3)

where the integration contour C is a line parallel to the imaginary s axis to the right of all the
singularities of f{s). Using B(s) in Eq. (19), we have

PO )" B N/N/ES T CESV)| "
, WG+ D+ 25 /1 +es+ 1]

Clearly, the singularities of #(x, s) include branch points at s =0, s= —1, and s = —(1 + 1/e).
We define the proper branches as those which give a positive square root for s lying on the real
positive axis and extend all three branch cuts along the negative real axis. The function #(x, s) also
has a simple pole at s = 0 and two simple poles at

s——( ){1+4e+,/1+56e+16e] (25)

However, the poles given by Eq. (25) are on the nonphysical Riemann sheet® and hence can be
ignored. To find out the solution for u(x, t), we consider a closed integration contour shown in
Fig. 1, and the integrand under consideration is just the product of the #(x, s) given by Eq. (24)
and e”. Since the integrand has no singularity within the closed contour, we have

Ie+ L+ L+ I+ Iy=0, (26)
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Fig. 1. The integration contour for the Laplace inverse transform.

where 1, represents the integral on the contour /. It can be proved that the integration on the large
semicircle contour R gives a zero contribution as usual, as |s| goes to oo, i.e.,

Ix=0. 27

According to the residue theorem, the integral on the small circle 7, as |s| goes to zero, is simply
equal to the product of (—27i) and its residue at s = 0, thus we have

I, = —2mi. (28)
Then from Eq. (26), we deduce that the integral we are interested in, /c, is given by
IC = 27i — (Ip —+ IN), (29)

and in turn the u(x, 1) is expressed as, according to Eq. (23),

1 1

u(* 1) = 35

1t is relatively easy to calculate I» and Iy, since on these contours we have s = —¢&, where £ is real
and positive. Note that I, and Iy do not necessarily cancel each other, because on the contour P
we have /s = i\/z while on the contour N we have /s = —i./¢ so that the #(x, s) is different
on these two integration contours. Specifically in our case, we find cancellation between 7, and Iy
on the interval —(1 + 1/¢) <s< —1, but not on the intervals —o0 <s< —(1 + 1/¢) and
—-1<s<0.

Omitting the algebraic detail of manipulating Z, and Iy, we obtain

u(x,7)=1- Aé fl dé e—e:[z}’ cos(xy) + \/—3_ sin(xy)]
’ T

B+ 4

317 _e 2y cos(xy) + \/3' sin(xy)
B[ e ‘[ 23+ 4 ] b

(1 + L/e)
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where y is defined as

E(l+e—€d)
o= [llre—el -g - 0<t<h . 32)
I1—¢| (e —-1-¢)
E-1

+le)<é<

We can simplify the expression of u(x, 7) by defining

3
= cos-!
8(&) = cos /3 ot (33)
then Eq. (31) can be rewritten as

o132 fd _ﬁ[sm[xv(«:)w(é)]] /3 J d _ﬁ[sm[xv(c)w(é)]} 34
SRR R e ™ v I

This expression must be evaluated numerically. The integrand of the first integral in Eq. (34) has
an integrable singularity at £ = 0. Because as ¢ -0, we have y—./&(1 + €), which in turn reduces
the integrand to x_ /(1 +€)/(3¢). To remove this singularity at ¢ = 0, we change integration
variables according to & = 5 as was done earlier’ in the first integral. The integrand of the second
integral in Eq. (34) has no singularity on the integration interval. However, we like to have a finite
integration interval so we change the integration variables according to

(1 + 1e)

E—1=— (35)

in the second integral. After these changes, Eq. (34) becomes

wry=1 - 283 f ' an e-mz[Sin[xw(n) + el(n)l]
4 2| !

3+ 4yi(n)
— )@ e*fJ‘l d'? e—f/(m)l: Sin[xyz(n) + 92(")] ], (36)
m o n(l + en)y/3 + dy3(n)
where
P =1 fe+ s mm = [ n)(e + %) (37
and

6.(n) = cos™ /3+3y oy "= L2 (38)

Equation (36) is the final expression we will use to_compute u(x, 7). The integrands in Eq.
(36) have no singularity. As n—0, we have y,—»n./1 + ¢, that reduces the first integrand to
2/3+ x/\/g). /1 + €, which is finite. And obviously, the second integrand is zero at 1 = 0 because
of the exponential term.

Once the u(x, 7) is obtained, we have two ways to derive the solution for v(x, 7). The first method
is based on Eq. (10), from which we deduce that

v(x, 1) = fdt’ e "~ u(x, 7). (39)
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One could obtain the v(x, 7) by using the u(x, t) in Eq. (39). The second way is to apply the same
inversion procedure (including the closed integration contour shown in Fig. 1) for the #(x, s) to
the #(x, s) and thus find the solution for v(x, ). We omit the algebraic detail and simply give the
result

v(x,r):l—éj

0

e eg,[ sinfxy(£) + 0(0)] }
E(1 = &)/3 + 47

NEN [ sinfxy(£) + 0(D)] }
- fet : (40)
i L~ 03 40

with y and 6 defined by Egs. (32) and (33). Equation (40) can be rewritten as

_ _\/3 fdz &[ sinfxy(&) + 6(2)] ]
RO S TV TR0

_ ;? - dﬁe_gf[(sin[xy(é)w(f)] } @

1= O3 +4()

For the same reasons as in the case of u(x, t), we change integration variables in Eq. (41). For
the first integral, we change variables according to 1 — & = #% and for the second integral, we
change variables according to Eq. (35) again. These changes yield

v(x, 1) = u(x,7) — ZA@ jl dpe ™ "’3’[ sinfxys() + 95(1)] ]
T VA= + den’(1 — )

(1 + 1)

+ 3 e l dn e‘,;((,,,[sin[xyz(n) + 92('7)]} (42)
n 13 + 4y3(n)

0

where

2 1 —_ —1 3
))3('7) = /(1 -n )(E + ?)3 03(’?) = Cos I3 F 4},%(”) (43)

Equations (36) and (42) are the solutions for u(x, t) and v(x, t) for the general case of an arbitrary
¢. When setting € = 0, we can easily see that the second integrals in Egs. (36) and (42) vanish, and
verify that the remaining parts reduce to the solutions obtained by Pomraning® for the case of ¢ = 0.
[By the way, the solution for u(x, t) given in Ref. 3, i.e., Eq. (75) on p. 258, has a typographical
error: the denominator of the coefficient in the second integral should be #(3 + #?) instead of the
(3 + n*) given in the paper.] Further, when substituting Egs. (36) and (42) in Egs. (9)-(11), we can
verify that the u(x, t) and v(x, 7) derived in this section satisfy the governing equations and the
boundary condition. These checks give us confidence in our treatment and algebraic manipulations.

3. NUMERICAL BENCHMARK RESULTS

In this section, we present the benchmark results for the u(x, t) and v(x, 1), computed according
to Eqgs. (36) and (42). The integrals in these two equations are evaluated numerically. Because of
the oscillations of the trigonometric functions in the integrands, the whole integration range
(0 < n < 1) is divided into several subranges for each integral. We consider a little bit in detail the
first integral in Eq. (36), whose integrand contains sin(xy,) and cos(xy) if the sin(xy; + 6,) is
expanded explicitly. As the integration variable n goes from 0 to 1, the quantity y,, as a function
of 5, changes from 0 to oo [see Eq. (37)]. This implies that xy, experiences an infinite number of
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2r cycles, assuming that x 0. It is easy to find the points #;, which correspond to xy, being equal

to j2r, by solving
- 1 2= .
no) =mn; /6+(1-nf)_—X’ i=L2...,m. (44)

The trigonometric functions sin(xy,) and cos(xy,) experience a complete period when 5 changes
from n;_, to n;, thus we define 5, < 5 < #; (with 1o = 0) as the jth (=1, 2,. .., m) integration
subrange. We arbitrarily set the last, or the (m + 1)th, subrange to cover #,, < n < 1. For each
subrange, including the last one, the integral is evaluated by Simpson’s rule,® i.e., the integration
subrange 1, < <, is divided into 2" equal intervals and N is successively increased from
N =1,2,3,...until a desired accuracy is achieved. We require the numerical results of u(x, t) and
r(x, 1) to have five digits after the decimal point; therefore, the convergence criteria is set to be
0.001%. Specifically, the integral for each subrange is thought to be converged when a relative error
of 0.001% is achieved between two successive numerical evaluations (with halved intervals). The
value of m (corresponding to the number of subranges) is determined in such a way that the mth
subrange is the first cycle in which the absolute value of the integral under consideration is less
than 1 x 1075, This value (1 x 10~%) is selected so that the last integration subrange, which still
covers infinite 2z cycles for xy, and thus makes the integral hard to converge, contributes little or
nothing to the total integration within the accuracy requirement. In order to avoid unnecessary
computation for the last subrange, we set a check point in the convergence process. If the absolute
value of the integral in this subrange, after convergence to 0.1% relative accuracy, is found to be
less than 1 x 10~°, then there is no need to continue to converge this value to a higher accuracy
and the convergence process is stopped.

The same procedure is also applied to the other three integrals, which involve xy, and xy;. The
only difference, compared with the case of xy;, is that when n goes from 0 to o, y, and y; both
change from oo to 0. Hence, solving equations similar to Eq. (44) for y, and y;, we find #;<#;_,.
This means that the first 2z cycle for sin(xy,) or sin(xy,) appears near 5 = 1, contrary to the case
of sin(xy,). Thus, we define the jth (j=1,2,..., m) integration subrange as 5, < 5 < ;- (with
o = 1) accordingly, and set the last subrange to cover 0 < % < #.

To test the analytic solution and particularly the numerical scheme just outlined, we compared
our numerical results with the “known” solutions for some special cases. We first consider the t
limits of u(x, 7) and v(x, 7). Based on Egs. (19) and (20), and using the theorems

lim [sAs)] = li£101 (), (45)
lim [sAAs)] = lim [f(7)], (46)
we easily have
u(x, 0) = v(x, 0) = 0, 47)
u(x, 1) - v(x, 1) - 1. (48)

Equation (47) is simply the initial conditions [see Eq. (12)]. Equation (48) states that at infinite time,
both the radiation and material temperature approach the same constant, which is unity in our
dimensionless form. Although we cannot simulate the 1 — oo solution, the results at ¢ = 0 are very
good references for our test. Using our analytic solution and the numerical procedure, we obtained
u(0, 0) = 0.00001 and v(0, 0) = 0.00000 for ¢ = 0.1, and u(1, 0) = —0.00001 and »(1, 0) = 0.00000
for ¢ = 1.0. Compared with Eq. (47), these results shows that our algorithm predicts the correct
values for this case and that the benchmark results generated in such a way have absolute errors
of the order of 10~°. The latter point is obvious. The integrals, computed according to our
numerical scheme, have relative errors of 0.001%, and the sum of the integrals in Eq. (36) is of
the order of 1 at small 7, like the case of T = 0 we are considering. This implies that the absolute
errors of the numerical integrations are in the order of 10~° for small z. Thus, the numerical results
for u(x, v) and v(x, t) have absolute errors of order 10~* in general and accordingly they are given
only the first five digits after the decimal point. However, as © increases, the contribution of the
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integrals tends to decrease (much less than unity for large 7). Thus, the absolute errors of the results
at large 7 are expected to be less than that at small .

Next, we consider a boundary layer solution in the time variable at x = 0, which shows rapidly
varying time behavior for small 1. As s— 00, #(0, 5) and 5(0, 5s) reduce to [see Egs. (19) and (20)]

(0, 5) - BVEN 3 4 A@ + o(i,), (49)

- 32
o ) fesiz  des®  8els s

N 3 1
5(0, 5) e f/-% + 0<?> (50)

Converting Eqs. (49) and (50) back to the 7 space, we have

u(0, 7) = \/%—%+2i€ /357;+ o), (51)
(0, 7) = 21 /# + 0(1). (52)

Equations (51) and (52) are the asymptotic boundary layer solutions (in the time variable) for
u(0, 7) and v(0, 7), and are only valid for small 7, with absolute errors in the order of z*. Therefore,
for very small 7 (say 7 < 1 x 10~*) and x = 0, the fully analytic solution given by Egs. (36) and
(42). valid for any x and any 7, and the asymptotic boundary layer solution given by Eqs. (51)
and (52), valid only for x = 0 and small t, should predict practically the same results. To check
this boundary layer behavior, we calculated (0, t) and ©(0, 7) for =1 x 107* and ¢ = 0.1 with
our numerical procedure and obtained # = 0.03016 and v = 0.00000 while Eqgs. (51) and (52) predict
u = 0.030157 and v = 2.060 x 107°. And for T = 5 x 10~% and ¢ = 1.0, the analytic solution yielded
u =0.06541 and v =0.00023, with the asymptotic solution predicting u = 0.065406 and
v = 2.303 x 10~*. We sec that the two solutions agree with each other exactly for the first five digits
after the decimal point, as they should. Certainly, as the increase of 7, the asymptotic solution
become less accurate and thus the agreement between the asymptotic solution and the analytic
solution deteriorates. These preliminary comparisons validate the analytic solutions and
particularly the numerical scheme employed at least to some extent.

Using the foregoing algorithm, we computed benchmark results of u(x, 7) and v(x, ) for e = 0.1
and ¢ = 1.0, and list these results in Tables 1-4, respectively. The values given in the tables are
believed to be accurate at least to the first four digits after the decimal point, for the reason stated
earlier. Even though we broke up the integration range into m + 1 subranges, the oscillation of
the trigonometric functions in the integrands still makes the numerical integration in a subrange
not easy to converge when the contribution from that subrange is very small (say less than 10*).
With a convergence criteria of 0.001%, the integration subranges usually need to be divided into
2%-2'% equal intervals for the integrals to converge for the first m cycles. And the number of intervals
in the last subrange, which includes infinite 2z cycles, may have to go beyond 2% for the integral
to converge to the required accuracy. However, this slow convergence does not pose a serious
difficulty to the computation, thanks to the advance of computer technology. The computation
of the integrals for a few extreme hard cases could be done in an hour when using a modern
personal computer or workstation; while for the other cases, the computation only took seconds
or minutes.

4. FINITE DIFFERENCE SOLUTION

This section will present a finite difference solution to the differential equations defined in
Sec. 2 and compare this solution to the analytic solution presented in Sec. 3. In order to make the
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presentation more coherent, Eqgs. (1), (2), and (3) are rewritten as:

%—],5 + g—f = cx(0 — E), (53)
F= £ (54)

1 %? =¢k(E—8), (55)
cE(0, 1) + 2F(0, 1) = 4F, (56)

where Pomraning’s assumption® about the temperature dependence of the heat capacity has been
included, the radiation flux, F, has been introduced as an explicit variable, and ¢ = aT* is the
material blackbody energy density (not to be confused with the 6 used in Sec. 2). All the other
variables are the same as in Sec. 2. In the time-dependent P; equations, there would be a time
derivative of the flux included in Eq. (54). Here we are examining the pure diffusion case without
any flux limiting, so that term is dropped and one has a simple Fix’s law of diffusion.

First, we perform the time differencing on Eq. (55), using a fully implicit backward Euler scheme:

1060 1

=@ = -0 = adE -6 (57)

or:

n+ 1 __ y n €K +1
6 _y+ex9+)1+6xEn ’ (58)

where the superscript » denotes the time level at which a variable is evaluated. With this definition
of y (not to be confused with a different y in Sec. 2) as an inverse distance, the time step appears
in the equations as an effective opacity. This type of time differencing and an alternative have been
discussed by Mihalas and Weaver.” Note that the material energy density is a simple linear
combustion of the old value and the radiation density at the new time step. Doing a similar time
differencing of Eq. (53) and inserting Eq. (58) yields:

1 0F 1 oF+!

- = +1 - n+ 1 +1
PP y(E'*' — E") PRy T k(@ *'— E"*Y)
___I_BF'“ Y n €K +1 w+ 1
T ¢ oz +x(y+ex9+y+eth —E) (59
or
K it JOFT! KY _ pgn
<l+y+€K>yE t2 8, E"+y+€K9. (60)

The spatial discretization will be on a staggered mesh where the independent spatial variable,
z, and the flux, F, will be evaluated at cell edges while the energy densities will represent cell
averages at the cell centers. Integrating Eq. (60) from z_,, to z.,,, and dividing by
AZ,' EZivip— Zi-12 giVCSI

;. (61)

+1
(1 y + erc)yE" t oAz, cAz, (Filip = FiZip) = vEl + Y + €x

In the problem of interest here, the opacity is constant, but in a more realistic problem, a cell
averaged opacity would be used in Eq. (61). There are many ways to discretize the flux in Eq. (54).
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Here we shall assume that the energy density is a piecewise linear function in space and define two
fluxes at each cell edge, one from the left and one from the right:

2c (B — E)
n = 1 ti
Flltll/Z = —3K 1 ZAZi (62)
2(: (En+ 1 — En +1
n+ 1 i+ 1 i+ 172
Frr+l,2 3K AZ,'.H (63)
These two expressions use the cell edge value of the radiation energy density which is unknown.
By setting these expressions equal to each other, i.e., requiring that the flux is continuous from

one cell to the next, one can solve for this edge energy density:

Az; [E}Y' + Az, E}}]

E"'H’Z Az, + Azi sy

(64)

which is a weighted average of the cell center quantities. Using this value for the radiation energy
density causes the piecewise linear variation in Eqs. (62) and (63) to be continuous from cell to
cell. Substituting Eq. (64) into Egs. (62) and (63) yields:

2¢c (B} — E**Y)

pl+]/2—Rl+l/2 3K AZ+AZ | )
i i+

(65)
which could have been written down intuitively, but then the implications of this equation would

have not been clear. Inserting Eq. (65) into Eq. (61) produces a tridiagonal system of equations
for the radiation energy density at time » + 1:

Enﬂ |:1+M+3KAZ,'AZ:'1/2V<1+ K )]E'[{wl_%‘_ﬂE?:ll

Aziy1n Y+ €K Aziyp

3k Az,Az, 12y o

=3kAz;Az;_ \pyE! + v+¢

(66)
where Az, 2 = YAz + Az, ).

The application of the boundary condition takes several similar steps. First, one must recognize
that F(0, 1) = F;h' and that equating this value from Eq. (56) to Eq. (63) allows one to solve for
the energy density at the surface:

4 4 +1
F'"° 3kAz, E )

= . (67)

4
(1 + 3KAZ[)

This can be substituted back into Eq. (63) to give F,'. Then Eq. (61) for the first cell becomes:

Az, 4 - +1 +1
l:l + 2(AZ3/2 + 3KAZ;/2) + 3KAZIAZ]/2Y(1 * Y + )JE’I‘ B E;’

_ \ L85 (Az 4 \"
= 3KAZ]AZ3/2}’(E] y + P 9 ) P mc <A23/2 + 3KAZ3,’2) . (68)

At the other boundary, deep in the slab where the radiation has not yet reached, Eq. (4) sets
E}t' = 0. Alternatively, one could apply a zero flux boundary condition. After solving the system
of equations for the radiation energy density, it is trivial to use Eq. (58) to evaluate the material
energy density. In order to achieve a normalized solution that is comparable the analytic solution
of the previous section, one must choose 4F,./c = 1. This will normalize the problem such that £
and @ directly correspond to « and v.
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Fig. 2. Linear plot of the radiation energy density (——) and material energy density (-~-) as functions
of position in the slab at different times. The symbols represent data from Tables 1 and 2.

After solving the system of equations [Egs. (66) and (68)], it is normal procedure to refine the
mesh and decrease the time step size until the solution appears to be converged. For this problem,
with a uniform spatial mesh, convergence is apparently achieved with kAz = (.1 and a time step
chosen so that the maximum change in radiation energy density from one time step to the next
is 5% in the zones with a non-zero radiation energy density. At the start of the solution, the time

T—rrr] —————tr] ———r]
1.0E+0 ‘4

1.0E-1

LLARALL I B SR AL

1.0E-2

-
(=]
m
w

Energy Density

1.0E-4

0.04 10 15
xz—depth into slab

Fig. 3. Logarithmic plot of the radiation energy density (——) and material energy density (==-) as
functions of position in the slab at different times. The symbols represent data from Tables 1 and 2.
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steps are At ~ 1.0 e — 9 (7 is the scaled time variable introduced in Sec. 2), and near = = 10 the
time steps are At &~ 0.03. The solution for ¢ = 0.1 is shown in Figs. 2 and 3. When plotted
logarithmically, it is easier to see the early time behavior of the energy density. The linear plot shows
the late time behavior to better advantage. These figures show that, as it should, the radiation
penetrates into the slab quickly. The material energy density is slower to respond. At late times
the two temperatures equilibrate and the physical problem becomes one of equilibrium diffusion.

The symbols shown in Figs. 2 and 3 represent the analytic point from Tables 1 and 2. Only the
point for radiation energy density at t = 0.001 and xz = 0.15 differs significantly from the
numerical solution. In order to more accurately calculate this early time variation, a finer spatial
mesh is required for the numerical solution. By decreasing the spatial mesh from 0.1 to 0.01, the
error at this point drops from a factor of two to 1.5%. In the tables, only the points with values
greater than 0.001 have enough significant digits to accurately compare to the numerical solutions.
For these points at the times 7 = 0.1, 1, and 10, the mean deviation from the analytic points are
0.48, 0.39, an 0.19%, respectively, with a spatial mesh size of 0.1. Using the finer spatial mesh
(kAz = 0.01), these mean deviations are 0.085, 0.072, and 0.14%.

Clearly, the analytic values from Tables 1 and 2 verify the accuracy of the numerical solution
presented here. More importantly, this comparison validates the methods for generating the
analytic benchmark and the finite difference solutions. Using completely different algorithms and
arriving at the same solution strongy suggests that each solution has been done correctly. It is highly
unlikely that either code has any remaining typographical, numerical, or logical errors. If such
errors existed, one solution would not converge to the other solution.

5. CONCLUDING REMARKS

We have derived in this paper an analytic solution to the linearized non-equilibrium Marshak
diffusion problem. Unlike the previous work,’ we kept the speed of light as a finite constant in
the equation of transfer in our treatment. The solution, in the form of finite integrals, was evaluated
numerically by using Simpson’s rule in each integration subrange. Typical numerical results were
given for the distribution of the radiative energy and material temperature as a function of space
and time. The analytic solution was compared with an asymptotic boundary layer solution and
a finite difference solution, and very good agreements were achieved. This leaves no doubt that
real benchmark results were obtained for the problem, because the solutions were generated in
totally different ways. Since the integration convergence criteria used in computation is 0.001%,
the maximum absolute error of the results is in the order of 103, Therefore, the numerical results
given in the tables are believed to be accurate up to at least the first four digits after the decimal
point. In order to increase the number of significant digits of the small values (say less than 0.001)
in the tables, one could attempt to do the calculations using a tighter convergence criteria. However,
due to the strong oscillatory behavior of the integrands, the computation cost would be enormous,
even if such a higher convergence criteria can be achieved practically by numerical methods.

The benchmark results for the non-equilibrium Marshak diffusion problem presented in this
paper, along with the previously published results,’ provide a rigorous benchmark test for
validating time-dependent radiation diffusion computer codes. This is the true value of having the
benchmark results.
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